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The migration of a rigid sphere in a two-dimensional unidirectional shear flow of a 
second-order fluid was considered by Ho & Leal (1976). It was found that the sphere 
would migrate in the direction of decreasing absolute shear rate. The present paper 
extends the previous results to a general quadratic flow, and also considers the case of 
a spherical drop. 

1. Introduction 
Brenner (1964) studied the Stokes resistance of an arbitrary rigid particle in an 

arbitrary field of flow. He showed that both the force and the torque relative to any 
given point 0 of the body can depend only linearly on certain vectorial or tensorial 
parameters that characterize the undisturbed bulk velocity distribution. In  a general 
linear flow, these parameters are the translational velocity relative to that of the 
particle, the vorticity tensor as seen in a frame of reference which rotates with the 
particle, and the rate-of-strain tensor. Calculation of the force and torque from these 
quantities, for an arbitrary body, then reduces to the determination of six tensor 
coefficients which depend only on the shape of the body. Symmetry conditions for 
these tensors were discussed by Hinch (1972). 

Application of these general ideas to the motion of an arbitrary rigid particle in a 
non-Newtonian fluid was first reported by Brunn (1976, 1977), who used an incom- 
pressible second-order fluid in a perturbation expansion about the Newtonian limit. 
As a consequence, the non-Newtonian contributions to the force and torque were found 
to depend only on quadratic combinations of the flow parameters. However, Brunn 
considered only a linear bulk velocity field and concluded that no migration would 
occur for neutrally buoyant rigid particles. In  contrast, Ho & Leal (1976) recently 
reported detailed calculations for the motion of a rigid sphere in a two-dimensional, 
quadratic, unidirectional shear flow of a second-order fluid. In  this case, it  was found 
that the sphere would migrate in the direction of decreasing absolute shear rate. 

The present paper extends the results of Ho & Leal (1976) to a general quadratic 
flow of a second-order fluid. In  $ 2 we outline the formulation of the problem. In $3.1 
general expressions are obtained for the translation and rotation of a rigid sphere, and 
numerical values for the geometry-dependent coefficients which appear are deter- 
mined by comparison with the detailed calculation for the specific flow of Ho & Leal 
(1976). Pinally, in $3.2 we obtain analogous results for a spherical drop. As will be 
obvious later on, index notation is to be preferred over tensor notation for our analysis 
and will be used throughout this paper. 
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2. Formulation of the problem 
We consider a rigid particle suspended in a second-order fluid which is undergoing 

some general quadratic motion. To non-dimensionalize, we define a characteristic 
(particle) length a, a characteristic velocity Ga and a characteristic pressure po G ,  
where G is an average shear rate for the bulk flow and po is the zero-shear viscosity. We 
adopt a non-rotating co-ordinate system which has its origin fixed a t  the centre of 
rotation of the particle, and thus translates with the particle velocity (Us)i relative to 
a fixed laboratory reference frame. The position vector of a point R in this translating 
frame is denoted by xi, whereas the position vectors for R and for the centre of rotation 
measured with respect to the fixed frame are xi and ( ~ ~ ( t ) ) ~ ,  respectively. Thus 

xi = xi- (x0( t ) )+  (2.1) 

The complete dimensionless velocity and pressure distributions, including the dis- 
turbance motion induced by the particle, will be denoted by (q, P ) .  The equations of 
motion, with inertia effects neglected, are then 

a s i j l a X j  = 0, aqlax, = 0, (2.2) 

where 8ij = + D ( 1 ) i j  + AD(1)ik D ( 1 ) k j  + As1 D(2)ij. (2 .3 )  

and D(*) ij are Rivlin-Ericksen tensors given by 

D ( ~ ) ~ ~  = auipxj + au,pxi, ( 2 . 4 ~ )  

(2 .4b)  

while h and el are material parameters of the fluid. From a macroscopic point of view, 
A is often defined as the ratio of a normal-stress function to the viscosity in the limit of 
zero shear; physically, it may be interpreted as the ratio of the intrinsic relaxation 
time scale of the fluid to the convective time scale of the flow problem (Caswell & 
Schwarz 1962). We assume here that the flow is slow (nearly Newtonian) compared 
with the intrinsic relaxation time (i.e. A < 1) but that non-Newtonian effects are still 
more important than inertial effects (i.e. Re < A) .  Similarly, the undisturbed bulk 
velocity and pressure fields (6, Q) may be assumed to satisfy the equations 

D(2) ij = aD(l) + uk D(o ij, k + D(l) i k  'k, j + D(l) kj 'k, 2'3 

(2.6u, b )  

where qj = -Qsij +E(l)ij +hE(,,,kE(l),,.+hslE(gij (2.6) 

with E(n)ij defined analogously to D(n)ij, but using K. 
We are interested primarily in the O(A) contribution to the translational velocity of 

the particle. For a unidirectional flow, this specifies the lateral migration as well as any 
O(A) contributions to motion in the direction of the undisturbed bulk flow. Ho & Leal 
(1976) showed rigorously, in the case of a sphere in a two-dimensional unidirectional 
flow, that the non-Newtonian migration is a 'near-field' effect caused by the dis- 
turbance velocity field in the vicinity of the sphere, provided of course that the sphere 
is small relative to the characteristic dimension of the flow d (i.e. 6 = a/d < 1). In  
particular, the fluid can effectively be considered as unbounded, with no direct effect 
of the bounding walls other than their role in determining the undisturbed velocity 
profile. Any corrections to the infinite-domain disturbance flow to account for the 
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presence of boundaries give only higher-order corrections in 6 for the migration 
velocity. A rigorous proof that the non-Newtonian contributions to particle motion 
a t  O(h) are similarly dominated by ‘near-field’ effects for a general quadratic 
flow has not been c0nstructed.t Nevertheless, we believe this result to hold true and 
shall therefore assume that the presence of any walls may be neglected. Hence we 
require that the complete velocity field Ui reduces to the undisturbed form a t  large 
distances from the particle, i.e. 

V,+V, as r = ( x j x j ) i + m .  (2 .7)  

= -eijk(Ws)kXj. (2 .8)  

On the surface of the particle, 27, satisfies 

The undisturbed velocity relative to the laboratory-fixed reference frame, which we 
denote by V;,  is assumed to be steady in time and representable, at any instant, by the 
general quadratic form 

where a;, Pij and Y;jk are constant tensors. Thus, in the translating frame which we 
have adopted, 

p; = a; + P;j xi + Y;jk 2; x i ,  

& = ai + Pij xj + Yijk xk xj - (q) i, 

(2 .9 )  

(2.10) 

where 
(2.11) 

The coefficient Yijk remains constant in time, but ai and Pij are time dependent, as a 
result of the motion of the reference frame. It follows easily from (2.1 1) that 

aai/at = p i j ( u s )  j, aPij/at = 2yijk(&)k. (2 .12a ,  b )  

In deriving (2.1 1) and (2 .12a ,  b ) ,  we have made use of the obvious symmetry condition 

Yijk = Yikj. (2.13) 

It is also apparent from (2 .5b )  that Pij and Yijk satisfy the additional constraints 

P“ aa = 0, Yik+ = Yiik = 0. (2.14) 

In this paper, tensors which give zero when contracted along any  two indices will be 
termed completely irreducible. 

Both Pij and yijk have to be decomposed into their respective irreducible compo- 
nents in order to be applied conveniently in a general expression for the force or torque. 
This decomposition was illustrated by Coope, Snider & McCourt (1965). Its main 
advantage for present purposes is that all the components of Pii and Yijk are made to be 
completely irreducible and symmetric, and much simplification is then possible in the 
analysis. Besides, each component then has its own physical significance. The decom- 
position of Pij is well known: 

(2.15) 

(2.16) 

(2.17) 

t And, indeed, would be extremely difficult in this general problem. 
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The decomposition of Y i j k  is more complicated: 

P. C.-H. Cham and L. G. Leal 

Yijk = [& (Yijk + Yikj + Y k i j  + Y k j i  + Yj i k  + yjki) 

- &(Yimm &jk +yjmm &ik + Ykmm &ij)l+ +[%jZ( -€Imn Ynmk -€kmn Ynml) 

+ ( - h m n  Ynml- klmnynrni) %kl+ 351 - Ykmm 8ij - yjmm &ik + 4Yimm 8jkl* 

(2.18) 
Consequently 

Yi j k  xk x j  = $4jk xk - 8(%jZ &mk + is im EJjk) elm xk x j  

+ &( - &ij  - &jz &k + 48il Sjk) 71 xk xj, (2.19) 

(2.20) 1 where $4jk = &Yijk + Yikj +?kid + Ykjd + Yj i k  + Y j k i )  

~ ~ ~ ~ ~ i m m 8 j k ~ ~ j m m ~ i k ~ ~ k m m  &ij), 

eij = Eimn Ynmj +SmnYnmi, 7 6  = Yimm. 

Once again, we note that eij ,  $ijk and Bii are all completely irreducible and symmetric. 
It is also important to observe that both 

(%jZ &mk + Bsim % j k )  elm and ( - &kZ 'ij - ' j l  &ik + ' j k )  '2 

in (2.19) are symmetric in j, k (the former condition is by no means obvious from a 
casual inspection) and therefore our decomposition is consistent with (2.13). 

Intuitively, it is appealing to interpret Oij as the vorticity gradient, and to assume 
that $ijk and ri specify the rate-of-strain gradient. To show that this intuitive 'guess' 
is indeed correct, we may re-express as 

% = ai + eij xj - 8ijk xj + $ijk xk xj - i(eijJ &mk + 48im EZjk) elm xk 

+ &( - 8kz&ij - &jz + 46.8jk) 72 xk xj - (us) $ (2.21) 

and follow the familiar argument based upon the rate of change of the length of a 
material line element (Predrickson 1964) to get (using the results of last paragraph) 

Finally we observe that 
d& (dx4/ds) = b(ds)/bt, (2.23) 

where b/bt is a convected time derivative expressed in terms of a fixed co-ordinate 
system, and therefore 

The argument for the vorticity is also well known and follows in a similar manner by 
consideration of the rate of rotation of a line element. For the sake of brevity, we shall 
omit the details here. As expected, the rotation depends only on Qi and Oij. 

3. The migration velocity 
We now attempt to obtain general expressions for the force and torque on the 

particle. To this end, we first note that the solution of (2.2), obtained by a straight- 
forward perturbation expansion, shows that the O( 1 )  Newtonian contribution is 
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linear in the flow parameters (ai - (Us)i), e i j ,  R,, $ i jk ,  tIu and ri and also the boundary 
value On the other hand, the O(h)  non-Newtonian contribution consists of 
quadratic combinations of these seven parameters, from the time-independent terms 
in the non-Newtonian part of (2.3), and also additional linear terms arising from their 
time derivatives, due to particle translation. By this formulation, any contributions 
from the rate of change of orientation (i.e. rotation) of the particlo are included auto- 
matically. Hence, if we now use the superscript (n)  to denote contributions at  O(h*), the 
expressions for the force and torque are 

4 = F\o) +hFc,l) 

= (tAij[&j-h(Ui’))j] +*A$jk ekj +*B;jQj +tA1 iikl $ lkj  +tB’. a3k B k j  

+ t A ; j ~ j  +tB;j[(wi”))j + h(wil)),]} 

+ h{28 terms from all possible quadratic combinations among 

+ he1{4 terms from time derivatives of Bi, eii, Ri, ( w ~ O ) ) ~ } ,  

&i, eij,  Qi? $ i jk ,  8$j, $i, Ti, (@i”)i} 
( 3 . 1 ~ )  

Ci = G\o) 

= (7Bij[&j - h( up’)j] f ‘Bijk ekj + ‘Aij Qj + ‘B:jk, $ikj f ‘Aijk0h.j 

+rBf j~ j+rAf j [ (w io ) ) j  +h(w~l’)j]}+h{...}+hs,{...}. (3.1 b) 

Here, we have used ki to denote the combination ai - ( ULo))i. The tA’s and ‘A’s are 
second- and higher-rank time-dependent material tensors that depend upon the particle 
geometry, i.e. its shape and its orientation with respect to our non-rotating co-ordinate 
frame. By contrast, the *B’s and ‘B’s are second- and higher-rank time-dependent 
pseudo-tensors. This distinction between tensors and pseudo-tensors is necessary 
because vorticity and torque are pseudo-quantities. The time dependence of these 
coefficients reflects the changing geometry as the particle rotates, and is therefore not 
present when the particles are spheres.? 

So far, the shape of the particle has not been specified. Brunn (1977) considered the 
case of a transversely isotropic particle, i.e. a body of revolution with foreaft sym- 
metry. All odd-rank tensors and even-rank pseudo-tensors are then identically zero, 
while the rest depend on the orientation of the symmetry axis. The expressions for the 
force and torque to O(1) and O(h)  are then 

(3.2) I FLo) = *A:j &j + tAi jk l  $1kj + *B:jk Bkj f tASj T j ,  

G(i0’ = ‘Bijk ekj + ‘A:j Qj + rAf j (~$o) ) j ,  

F$” = - tA:j( Uil’)j 4- {*B;jk &k Qj +tB2jk &k(wp’)j 

+ *Bfjk f i k  T j  + *B:jk(W$’))k T j  + *A;jkl &l e k j  

+ 7 more terms involving quadratic combinations of e i j ,  $i jk ,  

Bij,  ri, Qi, ( w $ ” ) ~  with coefficients which are even-rank tensors or 

odd-rank pseudo-tensors} + C.,{*A;~ aEtj/at}, (3 .3a)  

t Indeed, for analysis of non-spherical geometry it is more convenient to allow the co-ordinate 
frame to translate and rotate with the particle. We are mainly concerned in the present com- 
munication with spheres (equation (3.4) onwards) and so choose a non-rotating frame for our 
analysis. 
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= ‘ A 4 j ( o ~ 1 ’ ) j + ( r B 5 j k & k & j + r B ~ j k & k 7 j + r B ~ j k  Qk Qj 

+13  more terms involving quadratic combinations of &i, eij, 

$$jk, B i j ,  ri ,  Qi, ( W L O ) ) ~  with coefficients which are even-rank 

tensors or odd-rank pseudo-tensors} 

(3.3b) 

3. I. The rigid sphere 

To simplify further the calculations of this section, we consider the particular case of a 
neutrally buoyant rigid sphere in the absence of any externally applied torque. The 
non-zero material tensors and pseudo-tensors are then spherically isotropic and ex- 
pressed in the most general form are 

(3.4) I Aii = a, &aj, Bijk = bo Eijk,  

Aijw = a1 Sij 8h.l + a2 8ik Sj, + a3 Si, 8 j k .  

Expressions for the higher-order tensor and pseudo-tensor coefficients follow in a 
similar manner but are excessively cumbersome, and will not be given here. 

Equations (3.2) can now be further simplified. In  particular 

tA$jkz&ki = 0, tB:jkekj = rB:jkekj = 0, (3.5) 

whereas for the other terms we may write 

( 3 4  I tAl &. = clo)di, tAqj rj = c!j0’ ri, 

rAtj(~fP))j  = d&” (~ lp ) )~ .  
tj 3 

‘Aij Qj = dio’sli, 

Since the force and torque on the particle arc zero to the present level of approximation, 
we finallv obtain 

(3.7a, b )  

To simplify the O(h) expressions, we use (2.12b) for the time derivative of Pij [&i 
being constant with time by (3.7a)], relationships analogous to (3.5) and (3.6), and 
also (3.7b). This leads to 

( 

(0L1)), = - (d&o))-l{d$l)&, em, + d&l)e,, Q, + dil) I,?,,, e ,  

= ( C ~ ~ ) ) - ~ { C ~ ~ ) & ,  emi + cil) eimn &, a, + c!jl)e,,n $mni + c~ l )c jm,  e,, e,, + cs’) eim 7, 

+ cil) i2, B,, + c$%~,, Q, T,}, (3 8 a)  

+d~i)e,,7m+~~l)(~~o)),e,i +p e i Z m n ( ~ ~ o ) ) m 7 n } .  (3.8b) 

Equations (3.7a, b)  and (3.8a, b)  are the main results of this section. (Uio))i  and (wi0))i 
are the translational and angular velocities of a sphere in an unbounded Newtonian 
fluid. The scalars cp), dj0), die) and d!jo) in (3.6) are 

cia) = 677, tho) = 277, die) = -die) = 877. (3.9) 

Hence, as expected, the angular velocity is equal to the local undisturbed vorticity, 
whereas the translational velocity shows the anticipated dependence on the undis- 
turbed fluid velocity a, plus an additional term related to the existence of a gradient 
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in the rate of strain. These well-known results are of course completely consistent with, 
and derivable from, Faxkn's laws (Brenner 1964). 

The O(h)  non-Newtonian contributions to the translational and angular velocities 
of the sphere are given by (3.8 a). To make these equations useful, we need of course to 
obtain c'f) and dill. To this end, we may simply follow the reciprocal theorem outlined 
by Ho & Leal (1976). However, since they have already performed the migration 
calculations for a two-dimensional unidirectional flow, we need only a careful compari- 
son of the general equation ( 3 . 8 ~ )  with their specific results to determine completely 
the coefficients cil). The flow parameters for the two-dimensional case are 

a, = 81, a) pij = 81i 83jfl9 Ydjk = 81i 63j ' 3 k Y .  (3.10) 

For the purpose of comparing ( 3 . 8 ~ )  term by term with the migration-velocity expres- 
sion of Ho & Leal (1976), it is important to distinguish the separate contributions of 
$ijk,  Oij and ri in the original two-dimensional calculation. After some work, we finally 
obtain 

cP)  = 67~6,~ ~ 1 ' )  = 6n(l + 2 ~ , ) ,  cL') = Q 4 5 +  136,)) 

c p  = Qn(l+  ll€,), cp' = 2n(2 +5E1), c p  = 0, C i 1 )  = 2ns,. (3.11) 

To illustrate further the physical significance of the O(h)  translational-migration 
expression, we substitute ( 3 . 7 ~ ) )  (3.9) and (3.11) into ( 3 . 8 ~ )  to obtain 

(Vil)), = +%(5+ 1 3 ~ ~ ) e , , $ , ~ , + & ( 1  + 11s1)~, , ,eml~~,+~(1+3s1)ei ,7 , .  (3.12) 

Qualitatively, we see for the case of a neutrally buoyant rigid sphere that ( Uil)) ,  is 
generated only from the interaction between the pure straining part of the linear 
contribution to Q and either a strain-rate gradient or a vorticity gradient. The con- 
stant vorticity R, has no effect. The accepted value for E, is (Ho & Leal 1976) 

-0 .6  < €1 < -0 .5 (3.13) 

and therefore the coefficients in (3.12) are all negative. In  general, it is not possible to 
predict the direction of motion without specific knowledge of the flow parameters 
ei j ,  +,jk, Oij and ri. However, we observe, after some straightforward algebra, that the 
absolute shear rate for the bulk flow is given by 

e+, em, + [4e,, $mnc + g6+,, ed Of, +gei, rm] xi + . . . . (3.14) 

By inspection, we see then that in general each separate term in (3.12) tends to induce 
O(h) migration in the direction of decreasing absolute shear rate, in agreement with the 
conclusions of Ho & Leal (1976). 

The above results ( 3 . 8 ~ ~ )  and (3.12) are particularly important when (Up)) ,  repre- 
sents the first non-zero (though O(h) )  contribution to the motion of the sphere in the 
lateral direction. This happens when, in the Newtonian limit, the sphere translates 
only in the direction of the bulk translational velocity (i.e. eiik a k  rj = 0), as is always 
the case when the bulk flow itself is unidirectional. If it does not, then we see from ( 3 . 7 ~ )  
that the first lateral motion still occurs at O(h)  if ( @))+ has a component orthogonal to 
the a,, ri plane (i.e. Cijk ak rj( Uil))i # 0) .  Meanwhile the components of (Vi')), in the 
a,, r, plane represent only small non-Newtonian corrections to the translational 
motion of the particle. 
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3.2. The spherical drop 

Let us now turn to the interesting case where the particle is a non-Newtonian drop with 
zero-shear To non-dimensionalize the equations of motion inside the drop, 
we use a characteristic pressure Po C with all other characteristic quantities as defined in 
$2. The equations become 

aflii/axj = 0, aO,lax, = 0, (3.15) 

where flij = - mij + D(nij + X q l ) i k  B(l)kj + XQ(,) i j .  (3.16) 

The boundary conditions in this case are more complicated. In  particular it will be 
futile to define an angular velocity of the drop analogous to (2.8). On the surface of the 
neutrally buoyant drop, the boundary conditions are 

q = 8, (matching velocity), (3.17a) 

q n i  = o,ni = 0 (kinematic condition), (3.17b) 

Sijnj  = ni (matching stress). ( 3 . 1 7 ~ )  

Here K = ,iZo/,uo, S = a,uo G/a, where (T is the interfacial tension, and Bl and R, are the 
principal radii of curvature. 

In  contrast to a rigid particle, it is not possible in the case of a drop to obtain general 
expressions for the particle motion simply by force and torque considerations alone. 
Since no angular velocity can be defined, a torque expression will be useless. We note, 
however, that the condition of no torque on the particle is already implied by ( 3 . 1 7 ~ ) .  

The translational migration velocity can still be obtained. By considering the force 
alone, we get, for the case of an undeformed spherical drop (i.e. 6 = 0) ,  

(3.18) 

(Op)), = ( e ~ O ) ) - 1 { p ~ a m  - ( O:O)),J em, + eL*)eimn [a, - ( UAO)),] an 

Again, ti0) and tio) in (3.18) are well known, and given by 

( O ~ J ) ) ~  = ai + (ei0)/el0))Ti, 
h 

+ e(31)enm emni + ehl)eimn e, S,, + E&l)ei, r, + ĉ h1)51, emi + C A $ l ) ~ i m n  51, T,}. (3.19) 

(3.20) 

As for the O(h) expression (3.19), we get, again by comparison with a detailed recipro- 
cal-theorem calculation (Chan & Leal 1977), 

el” = ~ [ ( 1 2 + 3 2 ~ + 4 0 ~ ~ +  1 5 ~ ~ ) + e ~ ( 2 2 + 6 1 ~ + 8 0 ~ ~ + 3 0 ~ ~ ) ]  
2n 

5( 1 + K ) 3  
12n 

[1+24],  (3.21a) 
+75- 

[ ( 2 5 6 + 8 1 6 ~ +  1238~~+G25K9) 
7T Ch$ = 

63( 1 + K ) ~  

(3.21b) 

87T + q(592 + 2 1 1 2 ~  + 3 2 5 4 ~ ~  + 1 3 6 5 ~  )] [8 + i7Z1], ( 3 . 2 1 ~ )  
+ 7 2 1 ( 1 + 4 3  
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27T 
27(4+ K )  (1  + K ) ~  

611) = [(16 + 6 0 ~  + 11K2 + 3K3) +s1(64 + 2 0 4 ~  

471 + 1 7 3 ~ ~  + 33K )] + ' 9 ( 4 + ~ ) ( 1 + ~ ) ~  [-5+g1], (3.21d) 

where 7 = (X/h) K .  These results of course agree with those for a rigid sphere when K 

approaches infinity. 
If we now substitute (3.18), (3.20) and (3.21) into (3.19), an expression analogous to 

(3.12) can be obtained. For the sake of brevity, we shall omit the cumbersome expres- 
sion which results. However, we note, in contrast to the previous case of a rigid sphere, 
that constant vorticity will also contribute to the migration velocity of a neutrally 
buoyant drop. It is also obvious, since both fluids can make 'independent' contribu- 
tions to  the drop motion a t  O(h) [cf. (3.21)], that migration will still occur even if only 
the drop fluid is non-Newtonian. 

4. Discussion 
In the preceding section, we have derived expressions from which the first non- 

Newtonian contributions to the motion of spherical particles or drops can be calcu- 
lated exactly for a general quadratic flow of a second-order fluid. An approximate 
scheme which might appear to be an attractive alternative for unidirectional shear 
flows is simply to assume that the undisturbed flow is locatly two-dimensional so that 
the results of Ho & Leal (1976) can be adopted directly. In  this section we compare the 
exact and approximate predictions for the case of a rigid sphere in a pressure-driven 
flow through a straight tube of elliptical cross-section. 

A cross-sectional view of the configuration which we consider is shown in figure 1. 
We assume the unidirectional flow to be in the X i  direction, so that the undisturbed 
velocity profile is given byt  

I V l S  v 1 2 \  

where A,, and B, are the major and minor semi-axes respectively. We let ( X 2 ,  5,) be the 
components of the position vector for any material point in a co-ordinate system non- 
dimensionalized with the sphere radius a and fixed at the sphere centre. The sphere 
itself is at a radial distance D from the tube axis. Hence 

X i  = D sin B + aE2, X ;  = D cos 0 +ax,. (4.2) 

By straightforward substitution into (4. 1)' we may express the undisturbed velocity 

T$ = V,,,{[ 1 - s2(p2 sin2 0 + cos2 B)] - 2s&2 sin Bz, + cos BE3) - 52(p'%; + ~ t ) ) 3 ~ ~  - (Us)<, 
(4.3) 

relative to the sphere as 

t This approximation can be shown to be accurate to O(h4) in the retarded-motion, nth-order 
fluid expansion, cf. Langlois & Rivlin (1963). 
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FIGURE 1. A cross-sectional view of a sphere in an elliptical tube. 

wherep = B,/A,, s = D/Bo and 6 = a/B,. The parameter p is zero for the limiting case 
of two parallel plates and unity for a circular tube, whereas s is O( 1). The basic theory 
neglects walI effects and hence implicitly assumes g to be small. 

To consider the migration velocity of the sphere, it is most convenient to use 
co-ordinates (x2, x3) defined by the orthogonal transformation 

z2 = (p4sin28+ cos28)-f(cos8x2 +p2sin8x3), 

x3 = (p4sin2 8 + cos28)-+( - p s i n  0 X, + cos 8 x3) .  - 

The undisturbed velocity may then be expressed as 

where 
v, = [a +Is% + Y ( 4  + $1 x2 5 + $2 331 81, - (us)i’ 

and 

I p(p6 sin2 8 + cos2 8) 
p4 sin2 8 + cos2 8 Y = Kl,, - [ 

Equation (4.5) is in the most advantageous form for our present analysis. The ‘cross- 
stream ’ direction, in which uniform shearing occurs, is now denoted by x3 and #1 and 
$2 are parameters which reduce to zero for the limiting case of two parallel plates. 

The approximate procedure which we outlined a t  the beginning of this section is to 
assume the undisturbed flow to be locally two-dimensional so that the results of Ho & 
Leal (1976) can be adopted directly. The most natural implementation of this scheme 
in the present case is to take the xl, x3 plane as the (local) plane of shear, i.e. to neglect 
completely the $1 and $2 contributions to the shear gradient. The analysis of Ho & 
Leal (1976) then gives 

(4.8) (Uf))i  = BY[:( 1 + 3€1)] 83i. 
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This is to be compared with the exact result for the migration velocity, which may be 
calculated using (3.12) in conjunction with (4.5)-(4.7). After some algebra, we obtain 

The above expresson, with parameters B and y ,  clearly reduces in the limit as p 
approaches zero to that of Ho & Leal (1976) for the case of two parallel plates. Further- 
more, comparison of (4.8) and (4.9) shows, in general, that the attempt to adapt 
directly the two-dimensional results of Ho & Leal to the elliptical-tube problem [i.e. 
use (4.8) as an approximation] leads to a predicted migration velocity which not only 
has an error in magnitude, but is also in a slightly incorrect direction [cf. the term 
in (4.9)]. This difference in direction is zero for the particular case of a circular tube, but 
is significant when the parameter p is about 0-7. For the circular tube, we see from (4.4) 
that x3 corresponds exactly to the radial direction and hence the sphere migrates in a 
straight line towards the tube centre. The difference in magnitude between (4.8) and 
(4.9) is then less than 10 yo, assuming el = - 0.55 [cf. (3.13)]. For the elliptical tube, 
however, the sphere usually describes a curved trajectory in the xi, xi plane which, at 
any instant, depends on its radial distance D and orientation relative to the tube 
centre. (On the major and minor axes, the trajectories will be straight lines.) Intui- 
tively, it is reasonable to assume that the sphere will move towards the centre, but we 
shall not attempt to provide a rigorous proof here. 
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